

DIGITAL NOTES

ON
APPS DESIGN AND DEVELOPMENT

B.TECH III YEAR – II SEM
(2017-18)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‗A‘ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

III Year B.Tech. ECE-II Sem

OPEN ELECTIVE –IV

(R15A0568) APPS DESIGN AND DEVELOPMENT

Objectives:

1. To have an awareness of software engineering fundamentals and practices.

2. To learn the concepts of scripting languages and multimedia used for application design.

3. To understand the methods of java programming under client/server side and data base

connection.

UNIT – I: Fundamental concepts

Software Process models: The waterfall model, Incremental process models, Evolutionary process

models. The Unified process. Multimedia and hypermedia, World Wide Web, overview of multimedia

software tools, Graphics data types, file formats, color in image and video: color models in images,

color in video.

UNIT – II: HTML Common tags

Lists, Tables, Images, Forms, Frames; XML.

UNIT - III : Introduction to Java Scripts

Objects in Java Script, Dynamic HTML with Java Script. Design of GUI.

UNIT - IV : Web Servers

Introduction to Servlets: Lifecycle of a Servlet, The Problem with Servelet. The Anatomy of a JSP

Page, JSP Processing, Environment: Installing the Java: Software Development Kit, Tomcat Server.

Using Cookies-Session Tracking, Security Issues.

UNIT - V : Database Access

Database Programming using JDBC, Studying Javax.sql.* package, Accessing a Database from a JSP

Page, TESTING: Types of software testing ,test cases.

TEXT BOOKS:

1. Web Programming ,Building Internet Applications, CHRIS BATES II Edition, Wiley

Dreamtech.

2. Programming world wide web ,SEBESTA,PEARSON.

REFERENCES:

1. Core Servlets And Java Servlets Pages Vol-1:Core Technologies BY MARTY HALL,LARRY

BROWN PEARSON.

2. Software Engineering ,ROGER S PRESSMAN,TATA McGraw-HILL.

3. Software Testing Techniques, BORIS BEIZER,DREAMTECH,II EDITION.

4. Java Complete Reference ,7
TH

 EDITION ,HERBERTSCHILDT,TMH.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

UNIT – I: Fundamental concepts

Software Process models: The waterfall model, Incremental process models, Evolutionary process

models. The Unified process. Multimedia and hypermedia, World Wide Web, overview of multimedia

software tools, Graphics data types, file formats, color in image and video: color models in images,

color in video.

Software Engineering:

Software Engineering is the application of a systematic, disciplined, quantifiable approach to

the development, operation, and maintenance of software; that is, the application of

engineering to software.

A Layered Technology:

Figure: Software Engineering Layers

A quality Focus:

 Every organization is rest on its commitment to quality.

 Total quality management, Six Sigma, or similar continuous improvement culture and it is

this culture ultimately leads to development of increasingly more effective approaches to
software engineering.

Process:

 The software engineering process is the glue that holds the technology layers together and
enables rational and timely development of computer software.

 Process defines a framework that must be established for effective delivery of software

engineering technology.

 The software process forms the basis for management control of software projects and

establishes the context in which technical methods are applied, work products are produced,

milestones are established, quality is ensured, and change is properly managed.
Methods:

 Software engineering methods provide the technical aspects for building software.

 Methods encompass a broad array of tasks that include communication, requirements analysis,
design modeling, program construction, testing, and support.

Process & Generic Process Model

 A software process is defined as a collection of work activities, actions, and tasks that are

performed when some work product is to be created.

 Each of these activities, actions, and tasks reside within a framework or model that defines their
relationship with the process and with one another.

Figure: Generic Process Model

 Each framework activity is populated by a set of software engineering actions.

 Each software engineering action is defined by a task set that identifies the work tasks that are to

be completed, the work products that will be produced, the quality assurance points that will be

required, and the milestones that will be used to indicate progress.

 A generic process framework for software engineering defines five framework activities—

communication, planning, modeling, construction, and deployment.

 In addition, it defines a set of umbrella activities.

Process Flow:

 Process flow—describes how the framework activities and the actions and tasks that occur
within each framework activity are organized with respect to sequence and time.

 A linear process flow executes each of the five framework activities in sequence, beginning
with communication and culminating with deployment.

 An iterative process flow repeats one or more of the activities before proceeding to the next.

 An evolutionary process flow executes the activities in a ―circular‖ manner. Each circuit
through the five activities leads to a more complete version of the software.

 A parallel process flow executes one or more activities in parallel with other activities.

Waterfall Process Model

The waterfall model, sometimes called the classic life cycle, suggests a systematic, sequential
approach to software development that begins with customer specification of requirements and
progresses through planning, modeling, construction, and deployment, culminating in ongoing
support of the completed software.

Figure: Waterfall Model

Limitations:

 The nature of the requirements will not change very much during development; during

evolution.

 The model implies that you should attempt to complete a given stage before moving on to the
next stage.

 Does not account for the fact that requirements constantly change.
 It also means that customers cannot use anything until the entire system is complete.
 The model implies that once the product is finished, everything else is maintenance.
 Surprises at the end are very expensive
 Some teams sit ideal for other teams to finish

 Therefore, this model is only appropriate when the requirements are well-understood and

changes will be fairly limited during the design process.

When to use waterfall model?

 Requirements are very well known, clear and fixed
 Product definition is stable
 Technology is understood
 There are no ambiguous requirements
 Ample resources with required expertise are available freely

Incremental Process Model

 The incremental model combines elements of linear and parallel process flows.
 The incremental model applies linear sequences in a staggered fashion as calendar time

progresses.
 Each linear sequence produces deliverable ―increments‖ of the software.

 For example, word-processing software developed using the incremental paradigm might

deliver basic file management, editing, and document production functions in the first

increment; more sophisticated editing and document production capabilities in the second

increment; spelling and grammar checking in the third increment; and advanced page layout

capability in the fourth increment.

Figure: Incremental Process Model

Advantages:
 Generates working software quickly and early during the software life cycle.
 This model is more flexible – less costly to change scope and requirements.
 It is easier to test and debug during a smaller iteration.
 In this model customer can respond to each built.
 Lowers initial delivery cost.
 Easier to manage risk because risky pieces are identified and handled during iteration.

Disadvantages:
 Needs good planning and design.

 Needs a clear and complete definition of the whole system before it can be broken down and

built incrementally.
 Total cost is higher than waterfall.

Evolutionary Process Models

 Evolutionary models are iterative type models.

 They allow to develop more complete versions of the software.

Following are the evolutionary process models.

 1. The prototyping model

 2. The spiral model

 3. Concurrent development model

1. The Prototyping model

Prototype is defined as first or preliminary form using which other forms are copied .

Prototype model is a set of general objectives for software.

It does not identify the requirements like detailed input, output.

It is software working model of limited functionality.

In this model, working programs are quickly produced.

The different phases of Prototyping model are:

1. Communication
In this phase, developer and customer meet and discuss the overall objectives of the software.

2. Quick design

Quick design is implemented when requirements are known.

It includes only the important aspects like input and output format of the software.

It focuses on those aspects which are visible to the user rather than the detailed plan.

It helps to construct a prototype.

3. Modeling quick design

This phase gives the clear idea about the development of software because the software is now built.

It allows the developer to better understand the exact requirements.

4. Construction of prototype

 The prototype is evaluated by the customer itself.

5. Deployment, delivery, feedback

 If the user is not satisfied with current prototype then it refines according to the

requirements of the user.

The process of refining the prototype is repeated until all the requirements of users are met.

When the users are satisfied with the developed prototype then the system is developed on the basis

of final prototype.

Advantages of Prototyping Model

 Prototype model need not know the detailed input, output, processes, adaptability of operating

system and full machine interaction.

 In the development process of this model users are actively involved.

 The development process is the best platform to understand the system by the user.

 Errors are detected much earlier.

 Gives quick user feedback for better solutions.

Disadvantages of Prototyping Model:

 The client involvement is more and it is not always considered by the developer.

 It is a slow process because it takes more time for development.

 Many changes can disturb the rhythm of the development team.

2. The Spiral model

 Spiral model is a risk driven process model.

It is used for generating the software projects.

In spiral model, an alternate solution is provided if the risk is found in the risk analysis, then alternate

solutions are suggested and implemented.

It is a combination of prototype and sequential model or waterfall model.

In one iteration all activities are done, for large project's the output is small.

The framework activities of the spiral model are as shown in the following figure.

NOTE: The description of the phases of the spiral model is same as that of the process model.

Advantages of Spiral Model

 It reduces high amount of risk.

 It is good for large and critical projects.

 It gives strong approval and documentation control.

 In spiral model, the software is produced early in the life cycle process.

Disadvantages of Spiral Model

 It can be costly to develop a software model.

 It is not used for small projects.

3. The concurrent development model

 The concurrent development model is called as concurrent model.

 The communication activity has completed in the first iteration and exits in the awaiting

changes state.

 The modeling activity completed its initial communication and then go to the

underdevelopment state.

 If the customer specifies the change in the requirement, then the modeling activity moves from

the under development state into the awaiting change state.

 The concurrent process model activities moving from one state to another state.

Advantages of the concurrent development model

 This model is applicable to all types of software development processes.

 It is easy for understanding and use.

 It gives immediate feedback from testing.

 It provides an accurate picture of the current state of a project.

Disadvantages of the concurrent development model

 It needs better communication between the team members.

 It requires to remember the status of the different activities.

THE UNIFIED PROCESS:

The unified process (UP) is an attempt to draw on the best features and characteristics of conventional

software process models, but characterize them in a way that implements many of the best principles

of agile software development.

The Unified process recognizes the importance of customer communication and streamlined methods

for describing the customer‘s view of a system. It emphasizes the important role of software

architecture and ―helps the architect focus on the right goals, such as understandability, reliance to

future changes, and reuse―. If suggests a process flow that is iterative and incremental, providing the

evolutionary feel that is essential in modern software development.

A BRIEF HISTORY:

During the 1980s and into early 1990s, object-oriented (OO) methods and programming languages

gained a widespread audience throughout the software engineering community. A wide variety of

object-oriented analysis (OOA) and design (OOD) methods were proposed during the same time

period.

During the early 1990s James Rumbaugh, Grady Booch, and Ival Jacobsom began working on a

―Unified method‖ that would combine the best features of each of OOD & OOA. The result was

UML- a unified modeling language that contains a robust notation fot the modeling and development

of OO systems.

By 1997, UML became an industry standard for object-oriented software development. At the same

time, the Rational Corporation and other vendors developed automated tools to support UML methods.

Over the next few years, Jacobson, Rumbugh, and Booch developed the Unified process, a framework

for object-oriented software engineering using UML. Today, the Unified process and UML are widely

used on OO projects of all kinds. The iterative, incremental model proposed by the UP can and should

be adapted to meet specific project needs.

PHASES OF THE UNIFIED PROCESS:

The inception phase of the UP encompasses both customer communication and

planning activities. By collaborating with the customer and end-users, business requirements

for the software are identified, a rough architecture for the system is proposed and a plan for

the iterative, incremental nature of the ensuing project is developed.

The elaboration phase encompasses the customer communication and modeling

activities of the generic process model. Elaboration refines and expands the preliminary use-

cases that were developed as part of the inception phase and expands the architectural

representation to include five different views of the software- the use-case model, the

analysis model, the design model, the implementation model, and the deployment model.

The construction phase of the UP is identical to the construction activity defined for

the generic software process. Using the architectural model as input, the construction phase

develops or acquires the software components that will make each use-case operational for

end-users. To accomplish this, analysis and design models that were started during the

elaboration phase are completed to reflect the final version of the software increment.

The transition phase of the UP encompasses the latter stages of the generic

construction activity and the first part of the generic deployment activity. Software given to

end-users for beta testing, and user feedback reports both defects and necessary changes.

The production phase of the UP coincides with the deployment activity of the

generic process. During this phase, the on-going use of the software is monitored, support

for the operating environment is provided, and defect reports and requests for changes are

submitted and evaluated.

Elaborat ion

Incept ion

const ruc t ion

Release

transition

soft ware increment

product ion

UNIFIED PROCESS WORK PRODUCTS:

During the inception phase, the intent is to establish an overall ―vision‖ for the project, identify

a set of business requirements, make a business case for the software, and define project and

business risks that may represent a threat to success.

The elaboration phase produces a set of work products that elaborate

requirements and produce and architectural description and a preliminary design. The

UP analysis model is the work product that is developed as a consequence of this

activity. The classes and analysis packages defined as part of the analysis model are

refined further into a design model which identifies design classes, subsystems, and

the interfaces between subsystems. Both the analysis and design models expand and

refine an evolving representation of software architecture. In addition the elaboration

phase revisits risks and the project plan to ensure that each remains valid.

The construction phase produces an implementation model that translates design

classes into software components into the physical computing environment. Finally, a

test model describes tests that are used to ensure that use cases are properly reflected

in the software that has been constructed.

The transition phase delivers the software increment and assesses work products

that are produced as end-users work with the software. Feedback from beta testing

and qualitative requests for change is produced at this time.

Inception phase

Vision document
Init ial use-case model
Init ial project glossary
Init ial business case
Init ial risk assessment .
Project plan,

phases and it erat ions.
Business model,

if necessary .
One or more prot ot ypes

Elaboration phase

Use-case model
Supplement ary requirement s

including non-funct ional
Analy sis model
Soft ware archit ect ure

Descript ion.
Execut able archit ect ural

prot ot ype.
Preliminary design model
Revised risk list
Project plan including

it erat ion plan
adapt ed workflows
milest ones
t echnical work product s

Preliminary user manual

Construct ion phase

Design model
Soft ware component s
Int egrat ed soft ware

increment
Test plan and procedure
Test cases
Support document at ion

user manuals
inst allat ion manuals
descript ion of current

increment

Transition phase

Deliv ered soft ware

increment Bet a t est report s

General user feedback

What is Multimedia?

Multimedia can have a many definitions these include:

Multimedia means that computer information can be represented through audio, video, and animation in

addition to traditional media (i.e., text, graphics drawings, images).

A good general definition is:

Multimedia is the field concerned with the computer-controlled integration of text, graphics, drawings, still and

moving images (Video), animation, audio, and any other media where every type of information can be

represented, stored, transmitted and processed digitally.

A Multimedia Application is an Application which uses a collection of multiple media sources e.g. text,

graphics, images, sound/audio, animation and/or video.

Hypermedia can be considered as one of the multimedia applications.

Components of Multimedia:

Multimedia involves multiple modalities of text, audio, images, drawings, animation, and video. Examples of
how these modalities are put to use:

 Video teleconferencing.

 Distributed lectures for higher education.

 Tele-medicine.

 Co-operative work environments.

 Searching in (very) large video and image databases for target visual objects.

Multimedia and Hypermedia:

History of Multimedia:
Brief history of use of Multimedia:

 Newspaper: the first mass communication medium that uses text, graphics, and images
 Motion Pictures: conceived of in 1830's in order to observe motion too rapid for reception by the

human eye. Thomas Alva Edision invented motion picture camera in 1887

 Wireless Radio: 1895, Guglielmo Marconi sent first radio transmission at Pontecchio, Italy

 Television: the new medium for the 20th century, established video as a commonly available medium

and has since changed the world of mass communications.

The connection between computers and ideas about multimedia covers what is actually only a short period:

 1945: Vannevar Bush wrote a landmark article describing hypermedia system called Memex.

 1960: Ted Nelson coined the term hypertext.

 1968: Douglas Engelbart demonstrated the On-Line System (NLS), very early hypertext program.

 1969: Nelson and van Dam at Brown University created an early hypertext editor called FRESS.

 1976: MIT Architecture Machine Group proposed a Multiple Media project in Aspen Movie Map

 1978: First hypermedia videodisk

 1985: Negroponte and Wiesner co-founded the MIT Media Lab.

 1989: Tim Berners-Lee proposed the World Wide Web

 1990: Kristina Hooper Woolsey headed the Apple Multimedia Lab.

 1991: MPEG-1 was approved as an international standard for digital video later MPEG-2,MPEG-4

The introduction of PDAs in 1991 began a new period in the use of computers in multimedia.

 1992: JPEG was accepted as international standard for digital image compression later

 JPEG2000 The first MBone audio multicast on the Net was made.

 1993: The University of Illinois National Center for Supercomputing Applications produced

 1994: Jim Clark and Marc Andreessen created the Netscape program.

 1996: DVD video was introduced; high quality full-length movies were distributed on a single disk.

Hypermedia and Multimedia
Ted Nelson invented the term ―Hyper Text‖ around 1965

Types of media:

 Linear media: Meant to read from Non-linear media: Meant to be read non-linearly, by
 beginning to end. Ex: Text books following links that point to other parts of the document or

 to other documents

 Ex: Hyper Text system

Hypermedia: not constrained to be text-based, can include other media, e.g., graphics, images, and especially

the continuous media - sound and video. Examples of Multimedia applications includes: Digital Video edition,

E-magazines, WWW, Online reference books, games, home shopping, interactive TV, video conferencing,

Interactive Movies. The World Wide Web (WWW) is best example of a hypermedia application.

World Wide Web:

WWW is maintained & developed by World Wide Web Consortium (W3C) and standardized

by Internet Engineering Task Force (IETF). The W3C has listed the following goals for the WWW:

 Universal access of web resources .

 Effectiveness of navigating available information.

 Responsible use of posted material.

1) History of the WWW:

 1960: Charles Goldfarb et al. developed the Generalized Markup Language (GML) for IBM.

 1986: The ISO released a final version of the Standard Generalized Markup Language (SGML).

 1990: Tim Berners-Lee invented the Hyper Text Markup Language (HTML) & Hyper Text Transfer

Protocol (HTTP).

 1993: NCSA released an alpha version of Mosaic based on the version by Marc Andreessen for

 1994: Marc Andreessen et al. formed Mosaic Communications Corporation later named as

Netscape Communications Corporation

 1998: The W3C accepted XML version 1.0 specifications as a Recommendation. It is the main

 focus of W3C and supersedes HTML.

HTTP is a protocol that was originally designed for transmitting hypermedia, but can also support the

transmission of any file type. HTTP is a stateless request/response protocol: no information carried over for the

next request. The basic request format:

The URI (Uniform Resource Identifier): an identifier for the resource accessed, e.g. the host name,

always preceded by the token ―http://". URL could be Universal Resource Locator, if URI is included with

Query strings. Method is a way of exchanging information or performing task on URI. Two popular methods:

 GET method that the information requested is in the request string itself

 POST method specifies that the resource pointed to URI should consider Message body

Additional header specifies additional parameters about the client. The basic response

format: Version Status-Code Status-

Phrase Additional-Headers

 Message-body

Status code is number that identifies response type, Status Phrase is textual description of it. Two commonly

seen status codes: 200 OK - the request was processed successfully, 404 Not Found - the URI does not

exist.

 HTML (Hyper Text Markup Language):

HTML is a language for publishing Hypermedia on the World Wide Web - defined using SGML.

HTML uses ASCII, it is portable to all different computer hardware. The current version of HTML is version

4.01 in 1999. The next generation of HTML is XHTML - a reformulation of HTML using XML. HTML uses

tags to describe document elements:

<token params> - defining a starting point,

</token> - the ending point of the element.

Some elements have no ending tags. A very simple HTML page is as follows:

<HTML>

<HEAD>

<TITLE> A sample web page. </TITLE>

<META NAME = "Author" CONTENT = "Cranky Professor">

</HEAD>

<BODY>

<P>We can put any text we like here, since this is

a paragraph element.</P>

</BODY>

</HTML>

Naturally, HTML has more complex structures and can be mixed in with other standards. It allow integration

with script languages, dynamic manipulation, modular customization with Cascading Style Sheets (CSS)

Overview of Multimedia Software Tools:

The categories of software tools briefly examined here are:

 Music Sequencing and Notation

 Digital Audio

 Graphics and Image Editing

 Video Editing

 Animation

 Multimedia Authoring

 Cakewalk: now called Pro Audio. The term sequencer comes from older devices that stored sequences

of notes (―events", in MIDI). It is also possible to insert WAV files and Windows MCI commands (for

 animation and video) into music tracks

 Cubase: another sequencing/editing program, with capabilities similar to those of Cakewalk. It includes

 some digital audio editing tools.

 Macromedia Soundedit: mature program for creating audio for multimedia projects and the web that

 integrates well with other Macromedia products such as Flash and Director.

 Digital Audio:

 Digital Audio tools deal with accessing and editing the actual sampled sounds that make up audio

 Cool Edit: a very powerful and popular digital audio toolkit; emulates a professional audio studio –

 multi track productions and sound file editing including digital signal processing effects.

 Sound Forge: a sophisticated PC-based program for editing audio WAV files.

 Pro Tools: a high-end integrated audio production and editing environment - MIDI creation and

manipulation; powerful audio mixing, recording, and editing software.

 Graphics and Image Editing:

 Adobe Illustrator: a powerful publishing tool from Adobe. Uses vector graphics; graphics can be

 exported to Web.

 Adobe Photoshop: the standard in a graphics, image processing and manipulation tool. Allows layers of

 images, graphics, and text that can be separately manipulated for maximum flexibility.

 Filter factory permits creation of sophisticated lighting-effects filters.

 Macromedia Fireworks: software for making graphics specifically for the web.

 Macromedia Freehand: a text and web graphics editing tool that supports many bitmap formats such

 as GIF, PNG, and JPEG.

 Adobe Premiere: an intuitive, simple video editing tool for nonlinear editing, i.e., putting video clips

into any order: Video and audio are arranged in ―tracks". Provides a large number of video and audio

tracks, superimpositions and virtual clips. A large library of built-in transitions, filters and motions for

 clips) effective multimedia productions with little effort.

 Adobe After Effects: a powerful video editing tool that enables users to add and change existing

 movies. Can add many effects: lighting, shadows, motion blurring; layers.

 Final Cut Pro: a video editing tool by Apple; Macintosh only.

 Animation:

 Multimedia APIs:

o Java3D: API used by Java to construct and render 3D graphics, similar to the way in which the

Java Media Framework is used for handling media files. Provides a basic set of object primitives

(cube, splines, etc.) for building scenes. It is an abstraction layer built on top of OpenGL or

o DirectX : Windows API that supports video, images, audio and 3-D animation

o OpenGL: the highly portable, most popular 3-D API.

 Rendering Tools:

 3D Studio Max: rendering tool that includes a number of very high-end professional

tools for character animation, game development, and visual effects production.

 Softimage XSI: a powerful modeling, animation, and rendering package used for

animation and special effects in films and games.

Maya: competing product to Softimage; as well, it is a complete modeling package.

Render Man: rendering package created by Pixar.

GIF Animation Packages: a simpler approach to animation, allows very quick development

of effective small animations for the web.

 Multimedia Authoring:

 Macromedia Flash: allows users to create interactive movies by using the score metaphor, i.e., a

 timeline arranged in parallel event sequences.

 Macromedia Director: uses a movie metaphor to create interactive presentations very powerful and

 includes a built-in scripting language, Lingo, which allows creation of complex interactive movies.

 Authorware: a mature, well-supported authoring product based on the conic/Flow-control metaphor.

 Quest: similar to Authorware in many ways, uses a type of owcharting metaphor. However, the owchart

nodes can encapsulate information in a more abstract way (called frames) than simply subroutine

levels.

Graphics data types

There are number of file formats used in multimedia to represent image or graphics data. In general, image or

graphics data can be represented as follows:

1) 1-bit Images:

Image Consist of pixels or pels – picture elements in digital images. It contains On(1) or Off(0) bits stored in

single bit. So they are also known as Binary image. It is also called as Mono chrome image because it contains

no color. 640x480 image Requires 38.4 KB of storage.

2) 8-bit gray Level Images:

Consider 8-bit image, One for which each pixel has Gray value between 0 to 255 stored in single byte. Image is

a Two dimensional array known Bitmap. Image resolution refers to number of pixels in digital image like

1600x1200 is high resolution where as 640x480 is low resolution with aspect ration of 4:3. Frame buffer is a

hardware used to store array of pixels of image. Special hardware is used for this purpose known as Video/

Graphics card. 8-bit image is a collection of 1-bit bit planes. 640x480 image requires 300 KB of storage.

 Dithering:

Printing images is a complex task, 600 Dot per Inch (dpi) laser printer can usually print a dot or not print it.

However, 600x600 image will be printed in 1-inch space. Basic strategy of dithering is to trade Intensity

resolution for spatial resolution. For printing 1-bit printer, dithering is used to calculate larger patterns of dots.

Replace a pixel value by a larger pattern say 2x2, 4x4.

 Halftone printing:

Number of printed dots approximates varying sized disks of ink, which is a analog process that uses smaller or

larger filled circles of black ink to represent shading. Use NxN matrix of on-off 1- bit dots

3) 24-bit color image:

In color 24-bit images, Each pixel is represented by three bytes, usually representing components R, G, B. Each

value is in range 0-255, this format supports 256x256x256 possible combined colors. 640x480 size image takes

921.6 KB of storage. Actually it is stored in 32 bits, extra byte of data for each pixel storing alpha value for

representing special effect information

4) 8-bit color image:

Accurate color images can be obtained by quantizing color information to 8-bit, Called as 256 color image. 24

bit image is obtained from 8-bit using a concept of Lookup Table.

file formats

1) Graphics Interchange Format(GIF):

GIF was devised by UNISYS for transmitting images over phone lines. It uses Lempel-Ziv-Welch

algorithm. It is limited to 8-bit color image only. It produces acceptable color with few distinctive colors.

Support It supports Interlacing - successive display of pixels by 4 pass display.GIF comes in two Versions:

GIF87a, GIF 89a. it supports simple animation with Graphics Control Extension Block. This provides simple

control over delay time, transparency index. GIF file format includes: GIF Signature (6 Bytes), Screen

Descriptor (7 Bytes), Global Color Map, Image Information, GIF Terminator. Each image can contain its own

color lookup table known as Local color map.

2) Joint Photographic Experts Group(JPEG):

Most important current standard for image compression is JPEG. It was created by ISO. Eye brain

system cannot see excrementally fine detail. If many changes occur within few pixels, we refer to that

image segment as having High Spatial Frequency i.e. great change in (x,y) space. Color information is

partially dropped or averaged & then Small blocks of image are represented in spatial frequency domain

(u,v). values are divided by some large integer & truncated. In this way, small values are zeroed out.

This compression scheme is lossy. It is straightforward to allow user to choose how large denominator

to use & hence how much information to discard. This will allows to choose desired quality of image.

Usual default quality factor is Q=75%.

3) Portable Network Graphics(PNG):

It is System independent image format. Motivated by UNISYS on LZW compression method. Special

features of PNG files include support 48-bit color information. Files may contain gamma correction, alpha

channel information such as channel of transparency. Supports progressive display pixels in two dimensional

fashion few at time over seven passes through each 8x8 block of image

4) Tagged Image File Format(TIFF):

It is developed by Aldus Corporation, support Microsoft. It ssupports attachments of additional

information known Tags provides flexibility. Most tags are format signifiers. Different types of images: 1-bit,

gray scale, 8-bit, 24-bit are supported.

5) Exchange Image File(EXIF):

It is image format for Digital cameras, published in 2002 by JEITA. Compressed EXIF files are use

baseline JPEG format. Variety of tags available for higher quality printing. Picture taking conditions: light

source, white balance. It also includes specification of file format for audio that accompanies digital images.

6) Graphics Animation Files:

Few formats are aimed at storing graphics animations. FLC is important animation or moving picture

file format. It was originally created by Animation Pro. GL produces some what better quality moving pictures.

GL animations can also usually handle larger file sizes.

7) PS & PDF:

Post Script is language for typesetting & many high end printers have PS interpreter built into them. PS

is vector based, picture language. Page elements are essentially defined in terms of vectors. It includes Text as

well as vector/structured graphics, bit mapped images. PS does not provide compression it self, are just stored

as ASCII. Portable Document Format(PDF) includes Text and Figure language with LZW compressing method.

Provide higher compression with JPEG compression.

8) Windows WMF:

Windows Meta File is native vector file format. It is collection of Graphics Device Interface(GDI)

function calls. Device independent & unlimited in size.

9) Windows BMP:

Bitmap is system standard for Microsoft windows. It uses Run length encoding compression & can

fairly Store 24 bit bitmap image. BMP has many different modes including uncompressed 24 bit images.

10) Macintosh PAINT & PICT:

PAINT used in MacPaint program only for 1 bit monochrome images. PICT used in MacDraw

structured graphics.

11) X Windows PPM:

For X Window system, Portable Pix Map support 24 bit color bitmap & can be manipulated using many

public domain graphic editors.

Color in image and video: color models in images, color in video.

Color in Image and Video

 Basics of Color

Light and Spectra

 Visible light is an electromagnetic wave in the 400 nm - 700 nm range.

Most light we see is not one wavelength, it's a combination of many wavelengths.

 The profile above is called a spectral power distribution or spectrum.

The Human Retina

 The eye is basically just a camera

Each neuron is either a rod or a cone. Rods are not sensitive to color.

Cones and Perception

 Cones come in 3 types: red, green and blue. Each responds differently to various frequencies of light.

The following figure shows the spectral sensitivity functions of the cones and the luminous-

efficiency function of the human eye.

 The color signal to the brain comes from the response of the 3 cones to the spectra being observed.

That is, the signal consists of 3 numbers:

where E is the light (spectral power distribution) and S are the spectral sensitivity functions.

 A color can be specified as the sum of three colors. So colors form a 3 dimensional vector space.

 The following figure shows the amounts of three primaries needed to match all the wavelengths of

the visible spectrum.

 The negative value indicates that some colors cannot be exactly produced by adding up the primaries.

CIE Chromaticity Diagram

 Q: Does a set of primaries exist that span the space with only positive coefficients?

 A: Yes, but no pure colors.

In 1931, the CIE (Commission Internationale de L'Eclairage, or International Commission on

Illumination) defined three standard primaries (X, Y, Z). The Yprimary was intentionally chosen to

be identical to the luminous-efficiency function of human eyes.

 The above figure shows the amounts of X, Y, Z needed to exactly reproduce any visible color.

 All visible colors are in a "horseshoe" shaped cone in the X-Y-Z space. Consider the

plane X+Y+Z=1 and project it onto the X-Y plane, we get the CIE chromaticity diagram as below.

 The edges represent the "pure" colors (sine waves at the appropriate frequency)

 White (a blackbody radiating at 6447 kelvin) is at the "dot"

 When added, any two colors (points on the CIE diagram) produce a point on the line between them.

 Q: how can we find a color's complement on the CIE diagram?

L*a*b (Lab) Color Model

 A refined CIE model, named CIE L*a*b in 1976

 Luminance: L

Chrominance: a -- ranges from green to red, b -- ranges from blue to yellow

 Used by Photoshop

 Color Models in Images

 A color image is a 2-D array of (R,G,B) integer triplets. These triplets encode how much the

corresponding phosphor should be excited in devices such as a monitor.

RGB Color Model for CRT Displays

 CRT displays have three phosphors (RGB) which produce a combination of wavelengths when

excited with electrons.

CMY Color Model

 Cyan, Magenta, and Yellow (CMY) are complementary colors of RGB. They can be used

as Subtractive Primaries.

 CMY model is mostly used in printing devices where the color pigments on the paper absorb certain

colors (e.g., no red light reflected from cyan ink).

The RGB and CMY Cubes

Conversion between RGB and CMY:

-- e.g., convert White from (1, 1, 1) in RGB to (0, 0, 0) in CMY.

 Sometimes, an alternative CMYK model (K stands for Black) is used in color printing (e.g., to

produce darker black than simply mixing CMY).

o K := min (C, M, Y), C := C - K, M := M - K, Y := Y - K.

Comparison of Three Color Gamuts

 The gamut of colors is all colors that can be reproduced using the three primaries

 The Lab gamut covers all colors in visible spectrum

 The RGB gamut is smaller, hence certain visible colors (e.g. pure yellow, pure cyan) cannot be seen

on monitors

 The CMYK gamut is the smallest (but not a straight subset of the RGB gamut)

Color Models in Video

 YIQ and YUV are the two commonly used color models in video

YUV Color Model

 Initially, for PAL analog video, it is now also used in CCIR 601 standard for digital video

 Y (luminance) is the CIE Y primary.

Y = 0.299R + 0.587G + 0.114B

 Chrominance is defined as the difference between a color and a reference white at the same

luminance. It can be represented by U and V -- the color differences.

U = B - Y

V = R - Y

o If b/w image, then U = V = 0. --> No chrominance!

o ** In actual PAL implementation:

U = 0.492 (B - Y)

V = 0.877 (R - Y)

 Sample YUV Decomposition:

Y U V

 Eye is most sensitive to Y. In PAL, 5 (or 5.5) MHz is allocated to Y, 1.3 MHz to U and V.

YCbCr Color Model

 The YCbCr model is closely related to the YUV, it is a scaled and shifted YUV.

Cb = (B - Y) / 1.772 + 0.5

Cr = (R - Y) / 1.402 + 0.5

 The chrominance values in YCbCr are always in the range of 0 to 1.

 YCbCr is used in JPEG and MPEG.

YIQ Color Model

 YIQ is used in NTSC color TV broadcasting, it is downward compatible with B/W TV where only Y

is used.

 Although U and V nicely define the color differences, they do not align with the desired human

perceptual color sensitivities. In NTSC, I and Q are used instead.

I is the orange-blue axis, Q is the purple-green axis.

I and Q axes are scaled and rotated R - Y and B - Y (by 33 degrees clockwise).

I = 0.877(R - Y) cos 33 - 0.492(B - Y) sin 33

Q = 0.877(R - Y) sin 33 + 0.492(B - Y) cos 33

Namely,

I = 0.736(R - Y) - 0.268(B - Y) = 0.596R - 0.275G - 0.321B

Q = 0.478(R - Y) + 0.413(B - Y) = 0.212R - 0.523G + 0.311B

 The YIQ transform:

 Eye is most sensitive to Y, next to I, next to Q.

In NTSC broadcast TV, 4.2 MHz is allocated to Y, 1.5 MHz to I and 0.55 MHz to Q. For VCR, Y is

cut down to 3.2 MHz and I to 0.63 MHz.

Summary

 Color images are encoded as triplets of values.

 RGB is an additive color model that is used for light-emitting devices, e.g., CRT displays

CMY is a subtractive model that is used often for printers

 Two common color models in imaging are RGB and CMY, two common color models in video are

YUV and YIQ.

 YUV uses properties of the human eye to prioritize information. Y is the black and white

(luminance) image, U and V are the color difference (chrominance) images. YIQ uses similar idea.

 Besides the hardware-oriented color models (i.e., RGB, CMY, YUV, YIQ), HSB (Hue, Saturation,

and Brightness) and HLS (Hue, Lightness, and Saturation) are also commonly used.

UNIT – II: HTML Common tags

Lists, Tables, Images, Forms, Frames; XML.

HTML Common tags:-
HTML is the building block for web pages. HTML is a format that tells a computer how to display a web

page. The documents themselves are plain text files with special "tags" or codes that a web browser uses to

interpret and display information on your computer screen.

 HTML stands for Hyper Text Mark-up Language

 An HTML file is a text file containing small markup tags

 The mark-up tags tell the Web browser how to display the page

 An HTML file must have an htm or html file extension.

HTML Tags:- HTML tags are used to mark-up HTML elements .HTML tags are surrounded by the two characters < and >. The

surrounding characters are called angle brackets. HTML tags normally come in pairs like and The first tag in a pair is the start

tag, the second tag is the end tag . The text between the start and end tags is the element content . HTML tags are not case

sensitive, means the same as .

The most important tags in HTML are tags that define headings, paragraphs and line breaks.

Tag Description

<!DOCTYPE...> This tag defines the document type and HTML version.

<html> This tag encloses the complete HTML document and mainly comprises of document

header which is represented by <head>...</head> and document body which is

represented by <body>...</body> tags.

<head> This tag represents the document's header which can keep other HTML tags like <title>,

<link> etc.

<title> The <title> tag is used inside the <head> tag to mention the document title.

<body> This tag represents the document's body which keeps other HTML tags like <h1>, <div>,

<p> etc.

<p> This tag represents a paragraph.

<h1> to <h6> Defines header 1 to header 6

 Inserts a single line break

<hr> Defines a horizontal rule

<!--> Defines a comment

Headings:-

Headings are defined with the <h1> to <h6> tags. <h1> defines the largest heading while <h6> defines the

smallest.

<h1>This is a heading</h1>
<h2>This is a heading</h2>
<h3>This is a heading</h3>
<h4>This is a heading</h4>
<h5>This is a heading</h5>
<h6>This is a heading</h6>

Paragraphs:-

Paragraphs are defined with the <p> tag. Think of a paragraph as a block of text. You can use the align

attribute with a paragraph tag as well.

<p align="left">This is a paragraph</p>

<p align="center">this is another paragraph</p>

Line Breaks:-

The
 tag is used when you want to start a new line, but don't want to start a new paragraph. The

tag forces a line break wherever you place it. It is similar to single spacing in a document.
This Code output

<p>This
 is a para
 graph with

line breaks</p>

This

is a para

graph with line breaks

Horizontal Rule The element is used for horizontal rules that act as dividers between sections like this:

The horizontal rule does not have a closing tag. It takes attributes such as align and width

Code Output
<hr width="50%" align="center">

Sample html program

<!DOCTYPE html>

<html>

 <head>

 <title>This is document title

 </title>

 </head>

 <body>

 <h1>This is a heading</h1>

 <p>Document content goes here.....</p>

 </body>

</html>

1) Type the above program in notepad and save with some file name eg:sample.html

2) Open the file with browser and the webpage looks like this

Lists:-HTML offers web authors three ways for specifying lists of information.

All lists must contain one or more list elements. Lists are of three types

1)Un ordered list

2)Ordered List

3)Definition list

HTML Unordered Lists:An unordered list is a collection of related items that have no special order or

sequence. This list is created by using HTML tag. Each item in the list is marked with a bullet.

Example

Note: You must indicate paragraphs with <p> elements. A browser ignores any

indentations or blank lines in the source text. Without <p> elements, the document becomes

one large paragraph. HTML automatically adds an extra blank line before and after a paragraph.

HTML Ordered Lists:- items are numbered list instead of bulleted, This list is created by using

 tag.

HTML Definition Lists:- HTML and XHTML supports a list style which is called definition lists

where entries are listed like in a dictionary or encyclopedia. The definition list is the ideal way to present a

glossary, list of terms, or other name/value list. Definition List makes use of following three tags.

1). <dl> - Defines the start of the list

2). <dt> - A term

3).<dd> - Term definition

4). </dl> - Defines the end of the list

<!DOCTYPE html>

<html>

 <head>

 <title>HTML Unordered List</title>

 </head>

 <body>

 Beetroot

 Ginger Potato

 Radish

 </body>

 </html>

<!DOCTYPE html>

<html>

 <head>

 <title>HTML Ordered List</title>

 </head>

 <body>

 Beetroot

 Ginger

 Potato

 Radish

 </body>

</html>

HTML tables:
The HTML tables allow web authors to arrange data like text, images, links, other tables, etc. into rows and

columns of cells. The HTML tables are created using the <table> tag in which the <tr> tag is used to create

table rows and <td> tag is used to create data cells.

Example:

Table Heading: Table heading can be defined using <th> tag. This tag will be put to replace <td> tag,

which is used to represent actual data cell. Normally you will put your top row as table heading as shown

below, otherwise you can use <th> element in any row.

Tables Backgrounds: set table background using one of the following two ways:

1)bgcolor attribute - You can set background color for whole table or just for one cell.

2)background attribute - You can set background image for whole table or just for one cell. You can also set

border color also using bordercolor attribute.

<!DOCTYPE html>

<html>

 <head>

 <title>HTML Definition List</title>

 </head>

 <body>

 <dl>

 <dt>HTML</dt> <dd>This stands for Hyper Text Markup Language</dd>

 <dt>HTTP</dt> <dd>This stands for Hyper Text Transfer Protocol</dd>

 </dl>

</body>

</html>

<!DOCTYPE html>

 <html>

 <head>

 <title>HTML Tables</title>

 </head>

 <body>

 <table border="1">

 <tr>

 <td>Row 1, Column 1</td> <td>Row 1, Column 2</td>

 </tr>

 <tr> <td>Row 2, Column 1</td> <td>Row 2, Column 2</td>

 </tr>

 </table>

</body>

</html>

Images are very important to beautify as well as to depict many complex concepts in simple way on your

web page.

Insert Image:
insert any image in the web page by using tag.

Attribute Values

Value Description

left Align the image to the left

right Align the image to the right

middle Align the image in the middle

top Align the image at the top

Example

<!DOCTYPE html>

 <html>

 <head>

 <title>HTML Tables</title> </head>

 <body>

 <table border="1"bordercolor="red" bgcolor="yellow">

 <tr> <th>Name</th>

 <th>Salary</th> </tr>

 <td>Jayapal </td> <td>50,000.00</td>

 </tr>

 <tr> <td>Ravi</td> <td>45,000.00</td>

 </tr>

 </table>

</body>

</html>

<!DOCTYPE html>

 <html>

 <head>

 <title>Using Image in Webpage</title>

 </head>

 <body> <p>Simple Image Insert</p>

 <img src="test.png" alt="Test Image"

/>

 </body>

</html>

HTML FORMS:

HTML Forms are required to collect some data from the site visitor. For example, during user

registration you would like to collect information such as name, email address, credit card, etc. A form will

take input from the site visitor and then will post it to a back-end application such as CGI, ASP Script or

PHP script etc. The back-end application will perform required processing on the passed data based on

defined business logic inside the application. There are various form elements available like text fields, text

area fields, drop-down menus, radio buttons, checkboxes, etc.

HTML Form Controls :
There are different types of form controls that you can use to collect data using HTML form:

 Text Input Controls

 Checkboxes Controls

 Radio Box Controls

 Select Box Controls

 File Select boxes

 Hidden Controls

 Clickable Buttons

 Submit and Reset Button

<form action="Script URL" method="GET|POST"> form elements like input, text area etc. </form>

Text Input Controls:-
There are three types of text input used on forms:

1)Single-line text input controls - This control is used for items that require only one

 line of user input, such as search boxes or names. They are created using HTML

 <input> tag.

Example:

2)Password input controls - This is also a single-line text input but it masks the character as soon as a user

enters it. They are also created using HTML <input> tag.

Input Type Password

3)Multi-line text input controls - This is used when the user is required to give details that may be longer

than a single sentence. Multi-line input controls are created using HTML <textarea> tag.

<input type="text"> defines a one-line input field for text input:

<form>

 First name:

 <input type="text" name="firstname">

 Last name:

 <input type="text" name="lastname">

</form>

<form>

 User name:

 <input type="text" name="username">

 User password:

 <input type="password" name="psw">

</form>

<input type="password"> defines a password field:

<!DOCTYPE html>

<html>

 <head>

 <title>Multiple-Line Input Control</title>

 </head>

 <body>

 <form> Description:

 <textarea rows="5" cols="50" name="description"> Enter description here... </textarea>

 </form>

 </body>

</html>

Checkboxes Controls:-
 Checkboxes are used when more than one option is required to be selected. They are also created

using HTML <input> tag but type attribute is set to checkbox.

Here is an example HTML code for a form with two checkboxes:

Radio Button Control:-
Radio buttons are used when out of many options, just one option is required to be selected. They are also

created using HTML <input> tag but type attribute is set to radio.

Select Box Controls :- A select box, also called drop down box which provides option to list down

various options in the form of drop down list, from where a user can select one or more options.

File Select boxes:- If you want to allow a user to upload a file to your web site, you will need to use

a file upload box, also known as a file select box. This is also created using the <input> element but
type attribute is set to file.

<!DOCTYPE html>

<html> <head> <title>Checkbox Control</title> </head>

 <body>

 <form>

 <input type="checkbox" name="C++" value="on"> C++

 <input type="checkbox" name="C#" value="on"> C#

 <input type="checkbox" name="JAVA" value="on"> JAVA

 </form>

 </body> </html>

<!DOCTYPE html>

<html> <head> <title>Radio Box Control</title> </head>

<body> <p>Select a Course</p>

<form>

<input type="radio" name="subject" value="C++"> C++

<input type="radio" name="subject" value="JAVA"> JAVA

 <input type="radio" name="subject" value="HTML"> HTML

</form> </body> </html>

<!DOCTYPE html>

<html>

 <head>

 <title>Select Box Control</title>

 </head>

 <body>

 <form>

 <select name="dropdown">

 <option value="C++" selected>C++</option>

 <option value="JAVA">JAVA</option>

 <option value="HTML">HTML</option>

 </select>

 </form>

 </body>

 </html>

Hidden Controls:- Hidden form controls are used to hide data inside the page which later on can be

pushed to the server. This control hides inside the code and does not appear on the actual page. For

example, following hidden form is being used to keep current page number. When a user will click next

page then the value of hidden control will be sent to the web server and there it will decide which page

will be displayed next based on the passed current page.

Button Controls:-

There are various ways in HTML to create clickable buttons. You can also create a clickable button using

<input> tag by setting its type attribute to button. The type attribute can take the following values:

<!DOCTYPE html>

<html>

 <head>

 <title>File Upload Box</title>

 </head>

 <body>

 <p>File Upload Box</p>

 <form>

 <input type="file" name="fileupload" accept="image/*" />

 </form>

 </body>

 </html>

<html> <head> <title>File Upload Box</title> </head>

 <body>

 <form>

 <p>This is page 10</p>

 <input type="hidden" name="pagename" value="10" />

 <input type="submit" name="submit" value="Submit" />

 <input type="reset" name="reset" value="Reset" />

 </form> </body> </html>

HTML frames: These are used to divide your browser window into multiple sections where each section

can load a separate HTML document. A collection of frames in the browser window is known as a frameset.

The window is divided into frames in a similar way the tables are organized: into rows and columns.
To use frames on a page we use <frameset> tag instead of <body> tag. The <frameset> tag defines, how to divide the window into

frames. The rows attribute of <frameset> tag defines horizontal frames and cols attribute defines vertical frames. Each frame is

indicated by <frame> tag and it defines which HTML document shall open into the frame

<!DOCTYPE html>

 <html>

 <head>

 <title>File Upload Box</title>

 </head>

 <body>

 <form>

 <input type="submit" name="submit" value="Submit" />

 <input type="reset" name="reset" value="Reset" />

 <input type="button" name="ok" value="OK" />

 <input type="image" name="imagebutton" src="test1.png" />

 </form>

 </body> </html>

<frameset cols="25%,50%,25%">

 <frame src="frame_a.htm">

 <frame src="frame_b.htm">

 <frame src="frame_c.htm">

</frameset>

XML - XML stands for Extensible Mark-up Language, developed by W3C in 1996. It is a text-based

mark-up language derived from Standard Generalized Mark-up Language (SGML). XML 1.0 was officially

adopted as a W3C recommendation in 1998. XML was designed to carry data, not to display data. XML is

designed to be self-descriptive. XML is a subset of SGML that can define your own tags. A Meta Language

and tags describe the content. XML Supports CSS, XSL, DOM. XML does not qualify to be a programming

language as it does not performs any computation or algorithms. It is usually stored in a simple text file and

is processed by special software that is capable of interpreting XML.

The Difference between XML and HTML
1. HTML is about displaying information, where asXML is about carrying information. In other words,

XML was created to structure, store, and transport information. HTML was designed to display the data.

2. Using XML, we can create own tags where as in HTML it is not possible instead it offers several built in

tags.

 3. XML is platform independent neutral and language independent.

 4. XML tags and attribute names are case-sensitive where as in HTML it is not.

 5. XML attribute values must be single or double quoted where as in HTML it is not compulsory.

6. XML elements must be properly nested.

7. All XML elements must have a closing tag.

Well Formed XML Documents

 A "Well Formed" XML document must have the following correct XML syntax:

 - XML documents must have a root element

- XML elements must have a closing tag(start tag must have matching end tag).

- XML tags are case sensitive

- XML elements must be properly nested Ex:<one><two>Hello</two></one>

- XML attribute values must be quoted

XML with correct syntax is "Well Formed" XML. XML validated against a DTD is "Valid" XML.

What is Markup?
XML is a markup language that defines set of rules for encoding documents in a format that is both human-

readable and machine-readable.

Example for XML Document

<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!—xml declaration-->

<note>

<to>MRCET</to>

<from>MRGI</from>

<heading>KALPANA</heading>

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>

<iframe src="sample1.html" height="400" width="400"frameborder="1">

<h1>This is a Heading</h1>

<p>This is a paragraph.</p>

 </iframe>

</body>

</html>

<body>Hello, world! </body>

</note>

 Xml document begins with XML declaration statement: <? xml version="1.0"

 encoding="ISO-8859-1"?> .

 The next line describes the root element of the document: <note>.

 This element is "the parent" of all other elements.

 The next 4 lines describe 4child elements of the root: to, from, heading, and body. And

 finally the last line defines the end of the root element : < /note>.

 The XML declaration has no closing tag i.e. </?xml>

 The default standalone value is set to no. Setting it to yes tells the processor there are no external

declarations (DTD) required for parsing the document. The file name extension used for xml program is

.xml.

Valid XML document

If an XML document is well-formed and has an associated Document Type Declaration (DTD), then it is

said to be a valid XML document. We will study more about DTD in the chapter XML - DTDs.

XML DTD
Document Type Definition purpose is to define the structure of an XML document. It defines the structure

with a list of defined elements in the xml document. Using DTD we can specify the various elements types,

attributes and their relationship with one another. Basically DTD is used to specify the set of rules for

structuring data in any XML file.

Why use a DTD?

XML provides an application independent way of sharing data. With a DTD, independent groups of people

can agree to use a common DTD for interchanging data. Your application can use a standard DTD to verify

that data that you receive from the outside world is valid. You can also use a DTD to verify your own data.

DTD - XML building blocks
Various building blocks of XML are-

1. Elements: The basic entity is element. The elements are used for defining the tags. The elements

typically consist of opening and closing tag. Mostly only one element is used to define a single tag.

Syntax1: <!ELEMENT element-name (element-content)>

Syntax 2: <!ELEMENT element-name (#CDATA)>

#CDATA means the element contains character data that is not supposed to be parsed by a parser. or

Syntax 3: <!ELEMENT element-name (#PCDATA)>

#PCDATA means that the element contains data that IS going to be parsed by a parser. or

Syntax 4: <!ELEMENT element-name (ANY)>

The keyword ANY declares an element with any content.

Example:

<!ELEMENT note (#PCDATA)>

Elements with children (sequences)

Elements with one or more children are defined with the name of the children elements inside the

parentheses:

<!ELEMENT parent-name (child-element-name)> EX:<!ELEMENT student (id)>

 <!ELEMENT id (#PCDATA)> or

<!ELEMENT element-name (child-element-name, child-element-name,.....)>

Example: <!ELEMENT note (to,from,heading,body)>

When children are declared in a sequence separated by commas, the children must appear in the same

sequence in the document. In a full declaration, the children must also be declared, and the children can also

have children. The full declaration of the note document will be:

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#CDATA)>

<!ELEMENT from (#CDATA)>

<!ELEMENT heading (#CDATA)>

<!ELEMENT body (#CDATA)>

2. Tags
Tags are used to markup elements. A starting tag like <element_name> mark up the beginning of an

element, and an ending tag like </element_name> mark up the end of an element.

Examples:
A body element: <body>body text in between</body>.

A message element: <message>some message in between</message>

3. Attribute: The attributes are generally used to specify the values of the element. These are specified

within the double quotes. Ex: <flag type=‖true‖>

4. Entities
Entities as variables used to define common text. Entity references are references to entities. Most of you

will known the HTML entity reference: " " that is used to insert an extra space in an HTML

document. Entities are expanded when a document is parsed by an XML parser.

The following entities are predefined in XML:

< (<), >(>), &(&), "(") and '(').

5. CDATA: It stands for character data. CDATA is text that will NOT be parsed by a parser. Tags inside

the text will NOT be treated as markup and entities will not be expanded.

6. PCDATA: It stands for Parsed Character Data(i.e., text). Any parsed character data should not contain the

markup characters. The markup characters are < or > or &. If we want to use these characters then make use

of < , > or &. Think of character data as the text found between the start tag and the end tag of an

XML element. PCDATA is text that will be parsed by a parser. Tags inside the text will be treated as

markup and entities will be expanded.

<!DOCTYPE note

[

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>]>

Where PCDATA refers parsed character data. In the above xml document the elements to, from, heading,

body carries some text, so that, these elements are declared to carry text in DTD file.

This definition file is stored with .dtd extension.

DTD identifier is an identifier for the document type definition, which may be the path to a file on the

system or URL to a file on the internet. If the DTD is pointing to external path, it is called External Subset.

The square brackets [] enclose an optional list of entity declarations called Internal Subset.

Types of DTD:

1. Internal DTD

2. External DTD

1. Internal DTD

A DTD is referred to as an internal DTD if elements are declared within the XML files. To refer it as

internal DTD, standalone attribute in XML declaration must be set to yes. This means, the declaration works

independent of external source.

Syntax:

The syntax of internal DTD is as shown:

<!DOCTYPE root-element [element-declarations]>

Where root-element is the name of root element and element-declarations is where you declare the elements.

Example:

Following is a simple example of internal DTD:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Kalpana</name>

 <company>MRCET</company>

 <phone>(040) 123-4567</phone>

</address>

Let us go through the above code:

Start Declaration- Begin the XML declaration with following statement <?xml version="1.0"

encoding="UTF-8" standalone="yes" ?>

DTD- Immediately after the XML header, the document type declaration follows, commonly referred to as

the DOCTYPE:

<!DOCTYPE address [

The DOCTYPE declaration has an exclamation mark (!) at the start of the element name. The DOCTYPE

informs the parser that a DTD is associated with this XML document.

DTD Body- The DOCTYPE declaration is followed by body of the DTD, where you declare elements,

attributes, entities, and notations:

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone_no (#PCDATA)>

Several elements are declared here that make up the vocabulary of the <name> document. <!ELEMENT

name (#PCDATA)> defines the element name to be of type "#PCDATA". Here #PCDATA means parse-

able text data. End Declaration - Finally, the declaration section of the DTD is closed using a closing bracket

and a closing angle bracket (]>). This effectively ends the definition, and thereafter, the XML document

follows immediately

XML Schemas

 XML Schema is commonly known as XML Schema Definition (XSD). It is used to describe and validate

the structure and the content of XML data. XML schema defines the elements, attributes and data types.

Schema element supports Namespaces. It is similar to a database schema that describes the data in a

database. XSD extension is ―.xsd‖.

 This can be used as an alternative to XML DTD. The XML schema became the W#C recommendation in

2001.

 XML schema defines elements, attributes, element having child elements, order of child elements. It also

defines fixed and default values of elements and attributes.

 XML schema also allows the developer to us data types.

Syntax :You need to declare a schema in your XML document as follows:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

Example : contact.xsd

The following example shows how to use schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="contact">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 <xs:element name="phone" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The basic idea behind XML Schemas is that they describe the legitimate format that an XML document can

take.

XML Document: myschema.xml
<?xml version="1.0" encoding="UTF-8"?>

<contact xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:noNamespaceSchemaLocation=‖contact.xsd‖>

<name>KALPANA</name>

<company>04024056789</company>

<phone>9876543210</phone>

</contact>

Limitations of DTD:

 There is no built-in data type in DTDs.

 No new data type can be created in DTDs.

 The use of cardinality (no. of occurrences) in DTDs is limited.

 Namespaces are not supported.

 DTDs provide very limited support for modularity and reuse.

 We cannot put any restrictions on text content.

 Defaults for elements cannot be specified.

DTDs are written in a non-XML format and are difficult to validate

http://www.w3.org/2001/XMLSchema-instance

Strengths of Schema:

 XML schemas provide much greater specificity than DTDs.

 They supports large number of built-in-data types.

 They are namespace-aware.

 They are extensible to future additions.

 They support the uniqueness.

 It is easier to define data facets (restrictions on data).

SCHEMA STRUCTURE

The Schema Element
<xs: schema xmlns: xs="http://www.w3.org/2001/XMLSchema">

Element definitions
As we saw in the chapter XML - Elements, elements are the building blocks of XML document. An element

can be defined within an XSD as follows:

<xs:element name="x" type="y"/>

Data types:

These can be used to specify the type of data stored in an Element.

 String (xs:string)

 Date (xs:date or xs:time)

 Numeric (xs:integer or xs:decimal)

 Boolean (xs:boolean)

EX: Sample.xsd

<?xml version=‖1.0‖ encoading=‖UTF-8‖?>

<xs:schema xmlns:xs=http://www.w3.org/XMLSchema>

 <xs:element name="sname‖ type=‖xs:string"/>

/* <xs:element name="dob” type=”xs:date"/>

 <xs:element name="dobtime” type=”xs:time"/>

 <xs:element name="marks” type=”xs:integer"/>

 <xs:element name="avg” type=”xs:decimal"/>

 <xs:element name="flag” type=”xs:boolean"/> */

</xs:schema>

Sample.xml:

<?xml version=‖1.0‖ encoading=‖UTF-8‖?>

<sname xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="sample.xsd">

Kalpana /*yyyy-mm-dd 23:14:34 600 92.5 true/false */

</sname>

Definition Types
You can define XML schema elements in following ways:

Simple Type - Simple type element is used only in the context of the text. Some of predefined simple types

are: xs:integer, xs:boolean, xs:string, xs:date. For example:

<xs:element name="phone_number" type="xs:int" />

<phone>9876543210</phone>

http://www.w3.org/XMLSchema

UNIT - III : Introduction to Java Scripts

Objects in Java Script, Dynamic HTML with Java Script. Design of GUI.

Introduction to JavaScript
A number of technologies are present that develops the static web page, but we require a language that is
dynamic in nature to develop web pages a client side. Dynamic HTML is a combination of content formatted
using HTML, cascading stylesheets, a scripting language and DOM.
JavaScript originates from a language called LiveScript. The idea was to find a language which can be used
at client side, but not complicated as Java. JavaScript is a simple language which is only suitable for simple
tasks.

Benefits of JavaScript
Following are some of the benefits that JavaScript language possess to make the web site

dynamic. It is widely supported in browser
It gives easy access to document object and can manipulate most of
them. JavaScript can give interesting animations with many multimedia
datatypes. Special plug-in are not required to use JavaScript JavaScript
is secure language
JavaScript code resembles the code of C language, The syntax of both the language
is very close to each other.

A Sample JavaScript program

<html>

<head><title>java script program</title>

<script languague="javascript">

function popup()

{

var major=parseInt(navigator.appVersion);

var minor=parseInt(navigator.appVersion);

var agent=navigator.userAgent.toLowerCase();

document.write(agent+" "+major);
window.alert(agent+" "+major);

}

function farewell()

{

window.alert("Farewell and thanks for visiting");

}

</script>

</head>

<body onLoad="popup()" onUnload="farewell()">

</body>

</html>

JavaScript program contains variables, objects and functions.
Each line is terminated by a semicolon. Blocks of code must be surrounded by curly brackets.

Functions have parameters which are passed inside parenthesis
Variables are declared using the keyword var.

JavaScript program that shows the use of variables, datatypes

<html>
<head>

<title> My Sample JavaScript program</title>

<script language="javascript">

functiondisp()

{

varrno,sname,br,pr;

rno=prompt("Enter your registration number");

sname=prompt("Enter your Name");

br=prompt("Enter your branch Name");

pr=prompt("Enter the percentage");

document.writeln("<h2> Your Registration No. is :</h2>"+ rno.toUpperCase());

document.writeln("<h2> Your Name is :</h2>"+sname.toUpperCase());

document.writeln("<h2> Your Branch Name is :</h2>"+br.toUpperCase());
document.writeln("<h2> Your Overall Percentage is :</h2>"+pr);

document.close();

}

</script>

</head>

<body onLoad="disp()">

</body>

</html>

JavaScript program showing the using of constructs
<html>

<head><title> Factorial</title></head.

<body>

<script language="javascript">
function fact(n)

{

vari,f=1;

for(i=1;i<=n;i++)

{

f=f*i;

}

return(f);

}

varx,n,f;

x=prompt("Enter the number");

f=fact(x);
document.writeln("Factorial of "+x+" is "+f);

document.close();

</script>

</body>

</html>

Variables
Variables are like storage units. You can create variables to hold values. It is ideal to name a variable

something that is logical, so that you'll remember what you are using it for. For example, if you were writing

a program to

numbers, it could be confusing if you called your variables numberOne, numberTwo, numberThree
because you may forget which one is the divisor, which one is the dividend, and which one is the
quotient. A more logical approach would be to name them just that: divisor, dividend, quotient.
It is important to know the proper syntax to which variables must conform:

They must start with a letter or underscore ("_")
Subsequent characters can also be digits (0-9) or letters (A-Z and/or a-z). Remember, JavaScript is
case-sensitive. (That means that MyVariable and myVariable are two different names to JavaScript,
because they have different capitalization.)

Some examples of legal names are Number_hits, temp99, and _name.
When you declare a variable by assignment outside of a function, it is called a global variable, because it is
available everywhere in the current document. When you declare a variable within a function, it is called a
local variable, because it is available only within the function. Using var is optional, but you need to use it if
you have a variable that has been declared global and you want to re-declare it as a local variable inside a
function.
Variables can store all kinds of data (see below, Values of Variables, section 3.2). To assign a value to a
variable, you use the following notation:

dividend = 8;

divisor = 4;

myString = "I may want to use this message multiple
times"; message = myString;

Let's say the main part of the function will be dividing the dividend by the divisor and storing that number

in a variable called quotient. I can write this line of code in my program: quotient = divisor*dividend, and I

have both stored the value of the quotient to the variable quotient and I have declared the variable at the

same time. If I had wanted to, I could have declared it along with my other assigned variables above, with a

value of null. After executing the program, the value of quotient will be 2.

 That way, when you call it in your program, you do not have to retype the same sentence over and over
again, and if you want to change the content of that message, you only have to change it once -- in the
variable declaration.
Values of Variables
JavaScript recognizes the following types of values:

Numbers, such as 42 or 3.14159
Logical (Boolean) values, either true or false
Strings, such as "Howdy!"
null, a special keyword which refers to nothing

This relatively small set of types of values, or data types, enables you to perform useful functions
with your applications. There is no explicit distinction between integer and real-valued numbers.
Data Type Conversion

JavaScript is a loosely typed language. That means you do not have to specify the data type of a variable

when you declare it, and data types are converted automatically as needed during script execution. So, for

example, you could define a variable as follows:

var answer = 42 And later, you could assign the same variable a string value, for example, answer =

"Thanks for all the fish..."

In expressions involving numeric and string values, JavaScript converts the numeric values to strings. For

example,

consider the following statements:

x = "The answer is " + 42

y = 42 + " is the answer."

(The + sign tells JavaScript to concatenate, or stick together, the two strings. For example, if you write:

message = "Hello" + "World"

Literals
You use literals to represent values in JavaScript. These are fixed values, not variables, that you literally
provide in your script. Examples of literals include: 1234, "This is a literal," and true.

Integers
Integers can be expressed in decimal (base 10), hexadecimal (base 16), and octal (base 8). A decimal integer

literal consists of a sequence of digits without a leading 0 (zero). A leading 0 (zero) on an integer literal

indicates it is in octal; a leading 0x (or 0X) indicates hexadecimal. Hexadecimal integers can include digits

(0-9) and the letters a-f and A-F. Octal integers can include only the digits 0-7.

Some examples of integer literals are: 42, 0xFFF, and -345.

Floating-point literals
A floating-point literal can have the following parts: a decimal integer, a decimal point ("."), a fraction
(another decimal number), an exponent, and a type suffix. The exponent part is an "e" or "E" followed by
an integer, which can be signed (preceded by "+" or "-"). A floating-point literal must have at least one
digit, plus either a decimal point or "e" (or "E").
Some examples of floating-point literals are 3.1415, -3.1E12, .1e12, and 2E-12

Boolean literals
The Boolean type has two literal values: true and false.

String literals
A string literal is zero or more characters enclosed in double (") or single (') quotation marks. A string
must be delimited by quotation marks of the same type; that is, either both single quotation marks or
double quotation marks. The following are examples of string literals:

"blah"
'blah'
"1234"
"one line \n another line"

scaping characters
For characters not listed in the preceding table, a preceding backslash is ignored, with the exception of a
quotation mark and the backslash character itself.
You can insert quotation marks inside strings by preceding them with a backslash. This is known as
escaping the quotation marks. For example,
var quote = "He read \"The Cremation of Sam McGee\" by R.W. Service."
document.write(quote)

The result of this would be

He read "The Cremation of Sam McGee" by R.W. Service.
To include a literal backslash inside a string, you must escape the backslash character. For example, to

assign the

file path c:\temp to a string, use the following:

var home = "c:\\temp"

Arrays
An Array is an object which stores multiple values and has various properties. When you declare an array,
you must declare the name of it, and then how many values it will need to store. It is important to realize
that each value is stored in one of the elements of the array, and these elements start at 0. This means that
the first value in the array is really in the 0 element, and the second number is really in the first element. So
for example, if I want to store 10 values in my array, the storage elements would range from 0-9. The
notation for declaring an array looks like this:
myArray = new Array(10); foo = new Array(5);

Initially, all values are set to null. The notation for assigning values to each unit within the array looks like

this:

myArray[0] = 56;

myArray[1] = 23;

myArray[9] = 44;

Operators
JavaScript has many different operators, which come in several flavors, including binary. This tutorial
will cover some of the most essential assignment, comparison, arithmetic and logical operators.

Selected assignment operators
An assignment operator assigns a value to its left operand based on the value of its right operand.
The basic assignment operator is equal (=), which assigns the value of its right operand to its left
operand. The other operators are shorthand for standard operations. Find an abridged list of
shorthand operators below:

Shorthand operatorMeaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

.

Comparison operators
A comparison operator compares its operands and returns a logical value based on whether the comparison
is true or not. The operands can be numerical or string values. When used on string values, the
comparisons are based on the standard lexicographical ordering.

They are described in the following table.

Operator Description Example

Equal (= =) Evaluates to true if the operands are equal. x == y evaluates to true if x equals y.

Not equal (!=)

Evaluates to true if the operands are not equal.

 x != y evaluates to true if x is not equal

to y.

Greater than (>)
 Evaluates to true if left operand is greater than right x > y evaluates to true if x is greater

operand.

than y.

Greater than or Evaluates to true if left operand is greater than or x >= y evaluates to true if x is greater

equal (>=) equal to right operand. than or equal to y.

Less than (<)
 Evaluates to true if left operand is less than right

x < y evaluates to true if x is less than y.

operand.

Less than or equal Evaluates to true if left operand is less than or equal x <= y evaluates to true if x is less than

(<=) to right operand. or equal to y.

EXAMPLES: 5 == 5 would return TRUE. 5 != 5 would return FALSE. (The statement 'Five is not equal
to five.' ispatently false.) 5 <= 5 would return TRUE. (Five is less than or equal to five. More precisely, it's
exactly equal to five, but JavaScript could care less about boring details like that.)

Selected Arithmetic Operators
Arithmetic operators take numerical values (either literals or variables) as their operands and return a
single numerical value. The standard arithmetic operators are addition (+), subtraction (-), multiplication
(*), division (/) and remainder (%). These operators work as they do in other programming languages, as
well as in standard algebra.

Since programmers frequently need to add or subtract 1 from a variable, JavaScript has shortcuts for doing

this.

myVar++ adds one to the value of myVar, while myVar-- subtracts one from myVar.

EXAMPLES: Let x = 3. x++ bumps x up to 4, while x-- makes x equal to 2.

Logical Operators
Logical operators take Boolean (logical) values as operands and return a Boolean value. That is, they
evaluate whether each subexpression within a Boolean expression is true or false, and then execute the
operation on the respective truth values. Consider the following table:

Operator Usage Description

and (&&)

 expr1 &&

True if both logical expressions expr1 and expr2 are true. False otherwise.

 expr2

or (||)

expr1 || expr2

 True if either logical expression expr1 or expr2 is true. False if both expr1 and expr2 are

 false.

not (!) !expr False if expr is true; true if expr is false.

EXAMPLES: Since we have now learned to use the essential operators, we can use them in
conjunction with oneanother. See if you can work out why the following examples resolve the way they
do: If x = 4 and y = 7, ((x + y + 2) == 13) && (((x + y) / 2) == 2) returns FALSE.
If x = 4 and y = 7, ((y - x + 9) == 12) || ((x * y) == 2) returns TRUE.

If x = 4 and y = 7, !((x/2 + y) == 9) || ((x * (y/2)) == 2) returns FALSE.

Using JavaScript Objects
When you load a document in your web browser, it creates a number of JavaScript objects with properties
and capabilities based on the HTML in the document and other pertinent information. These objects exist
in a hierarchy that reflects the structure of the HTML page itself.

The pre-defined objects that are most commonly used are the window and document objects. The window

has methods that allow you to create new windows with the open() and close() methods. It also allows you

to create message boxes using alert(), confirm(), and prompt(). Each displays the text that you put between

the parentheses.

For example, the following code:

alert("This is an alert box")
The objects in this pre-defined hierarchy can be accessed and modified. To refer to specific properties, you

must specify the property name and all its ancestors, spelling out the complete hierarchy until the

document object. A period, '.', is used in between each object and the name of its property. Generally, a

property / object gets its name from the NAME attribute of the HTML tag. For example, the following

refers to the value property of a text field named text1 in a form named myform in the current document.

document.myform.text1.value

Form elements can also be accessed through the aforementioned forms array of the document object. In the

above
example, if the form named myform was the first form on the page, and text1 was the third field in the form,

the following also refers to that field's value property.
document.forms[0].elements[2].value Functions (capabiltiies) of an object can similarly be accessed using

the period notation. For example, the following
instruction resets the 2nd form in the document.
 document.forms[2].reset();
Click on one of the objects below to view the Netscape documentation on the specific properties and
methods that that object has:

Functions
Functions are one of the fundamental building blocks in JavaScript. A function is a JavaScript procedure
-- a set of statements that performs a specific task. A function definition has these basic parts:

The function keyword
A function name
A comma-separated list of arguments to the function in
parentheses The statements in the function in curly braces: { }

Defining a Function
When defining a function, it is very important that you pay close attention to the syntax. Unlike HTML,
JavaScript is case sensitive, and it is very important to remember to enclose a function within curly braces
{ }, separate parameters with commas, and use a semi-colon at the end of your line of code.
It's important to understand the difference between defining and calling a function.
Defining the function names the function and specifies what to do when the function is called. You define

a function within the <SCRIPT>...</SCRIPT> tags within the <HEAD>...</HEAD> tags. In defining a

function, you must also declare the variables which you will be calling in that function. Here's an

example of defining a function:

Function popupalert() {

alert('This is an alert box.');

}

Notice the parentheses after the function name. It is imperative that you include these parentheses, even if
they are empty. If you want to pass a parameter into the function, you would include that parameter inside
of the parentheses. A parameter is a bit of extra information that cn be different each time the function is
run. It is stored in a variable and can be accessed just like any other variable. Here's an example of a
function that takes a parameter:

Function anotherAlert(word) {

alert(word + ' is the word that you clicked on');

}

When you call this function, you need to pass a parameter (such as the word that the user clicked on) into

the function. Then the function can use this information. You can pass in a different word as a parameter

each time you call the function, and the alert box will change appropriately. You'll see how to pass a

parameter a little later on. You can pass in multiple parameters, by separating them with a comma. You

would want to pass in a few parameters if you have more than one variable that you either want to change

or use in your function. Here are two examples of passing in multiple parameters when you are defining the

function:

functionsecondAlert(word,password) {

confirm(word + ' is the word that you clicked on. The

secret password is ' + password);

}

functionthirdAlert(word,password) {

confirm(word + ' is the word you clicked on. Please

take note of the password, ' + password);

}

You'll notice that the same parameters are passed into both of these functions. However, you can pass in
whatever values you want to use (see this same example below in calling the function).
Calling a Function
Calling the function actually performs the specified actions. When you call a function, this is usually

within the

BODY of the HTML page, and you usually pass a parameter into the function. A parameter is a variable

from outside

of the defined function on which the function will act.

Here's an example of calling the same function:
popupalert();

For the other example, this is how you may call it:

top

Here is the same example with multiple parameters that was shown above:

awesome

computers

You'll notice in the code that different values for the variables word and password are passed in. These

values here

are what the function will need to perform the actions in the function. Make sure that the values you pass

in are in

the correct order because the function will take them in and assign these values to the parameters in the

parentheses of the function declaration. Once you pass values into your function, you can use them

however you

want within your function.

Try it for yourself:

When you click on the words below, a confirmation box will pop up and then the link will bring you to the

top of

the page.
awesome

computers

If/Else Statements
if statements execute a set of commands if a specified condition is true. If the condition is false,
another set of statements can be executed through the use of the else keyword.

The main idea behind if statements is embodied by the sentence: "If the weather's good tomorrow, we'll
go out and have a picnic and Lisa will do cartwheels -- else, we'll stay in and Catherine will watch
TV." As you can see, the idea is quite intuitive and, surprisingly enough, so is the syntax:
if(condition) {

statements1

}

-or-
if(condition) {

statements1

}

else{

statements2

}
(An if statement does not require an else statement following it, but an else statement must be preceded
by an if statement.)
conditioncan be any JavaScript expression that evaluates to true or false. Parentheses are required
around thecondition. If condition evaluates to true, the statements in statements1 are executed.
statements1and statements2 can be any JavaScript statements, including further nestedifstatements.

Multiple
statements must be enclosed in braces.

Here's an example:
if(weather == 'good') {

go_out(we);

have_a_picnic(we);

do_cartwheels(Lisa);

watch_TV(Catherine);

}

Loops
Loops are an incredibly useful programming tool. Loops handle repetitive tasks extremely well,
especially in the context of consecutive elements. Arrays immediately spring too mind here, since array
elements are numbered consecutively. It would be quite intuitive (and equally practical), for instance, to
write a loop that added 1 to each element within an array. Don't worry if this doesn't make a lot of sense
now, it will, after you finish reading the tutorial.
The two most common types of loops are for and while loops:

for Loops
A for loop constitutes a statement which consists of three expressions, enclosed in parentheses and
separated by semicolons, followed by a block of statements executed in the loop.
This definition may, at first, sound confusing. Indeed, it is hard to understand for loops without seeing
them in action.
A for loop resembles the following:

for (initial-expression; condition; increment-expression) {
statements

}
The initial-expression is a statement or variable declaration. (See the section on variables for more
information.) It is typically used to initialize a counter variable. This expression may optionally declare
new variables with the var keyword.
The condition is evaluated on each pass through the loop. If this condition evaluates to true, the
statements in statements are performed. When the condition evaluates to false, the execution of the for
loop stops. Thisconditional test is optional. If omitted, the condition always evaluates to true.
The increment-expression is generally used to update or increment the counter variable.
The statements constitute a block of statements that are executed as long as condition evaluates to true.
This can be a single statement or multiple statements. Although not required, it is good practice to indent
these statements from the beginning of the for statement to make your code more readable.
Check out the following for statement. It starts by declaring the variable i and initializing it to zero. It

checks
whetheri is less than nine, performs the two successive statements, and increments i by one after each pass

through the loop:

var n = 0;

for (vari = 0; i< 3; i++) {

n += i;

alert("The value of n is now " + n);

}

while Loops
The while loop, although most people would not recognize it as such, is for's twin. The two can fill in for

one another - using either one is only a matter of convenience or preference according to context. while

creates a loop that evaluates an expression, and if it is true, executes a block of statements. The loop then

repeats, as long as the specified condition is true.
The syntax of while differs slightly from that of for:

while(condition) {

statements

}
conditionis evaluated before each pass through the loop. If this condition evaluates to true, the statements

in thesucceeding block are performed. When condition evaluates to false, execution continues with the

statement following statements.

statementsis a block of statements that are executed as long as the condition evaluates to true.
Although notrequired, it is good practice to indent these statements from the beginning of the
statement. The following while loop iterates as long as n is less than three.
var n = 0;

var x = 0;

while(n < 3) {

n++;

x += n;

alert("The value of n is " + n + ". The value of x is " + x);

}

Try it for yourself: Click this link

Commenting
Comments allow you to write notes to yourself within your program. These are important because they

allow someone to browse your code and understand what the various functions do or what your

variables represent. Comments also allow you to understand your code if it's been a while since you

last looked at it.

In JavaScript, you can write both one-line comments and multiple line comments. The notation for each is
different though. For a one line comment, you precede your comment with //. This indicates that
everything written on that line, after the //, is a comment and the program should disregard it.
For a multiple-line comment, you start with /* and end with */ . It is nice to put an * at the beginning of
each line just so someone perusing your code realizes that he/she is looking at a comment (if it is really
long this helps). This is not necessary though.
The following are examples of comments in JavaScript.

// This is a single line comment.

/* This is a multiple line comment with only one line. */

/* This is a multiple line comment.

* The star (*) at the beginning of this line is optional.

* So is the star at the beginning of this line. */

JavaScript program using objects

<html>

<head>

<script language=‖javascript‖>

function demo1()

{

Popup(―Hello‖);

Obj= new sample (2, 4);

alert(obj.x + obj.y);

}
function sample(x,y)

{

this.x=x;

this.y=y;

}

</script>

</head.

<body onLoad=‖demo1()‖>

</body>

</html>

Regular Expression

A script language may take name data from a user and have to search through the string one character at
a time. The usual approach in scripting language is to create a pattern called a regular expression which
describes a set of characters that may be present in a string.

var pattern = ―target‖;

var string = ―can you find the target‖;

string.match(pattern);
But the above code can also be written using regular expression as a parameter, as shown

below. var pattern = new RegExp(―target‖);
var string = ―can you find the target‖;

pattern.exec(string);
Regular expression is a javascript object. Dynamic patterns are created using the

keyword new. regex = new RegExp(―feroz | btech‖);
JavaScript code to implement RegExp
<html>

<head>

<body>

<script language=‖javascript‖>

var re = new RegExp(―*A | a+mer‖);

varmsg=‖ Have you met Btech recently‖;

var res= re.exec(msg);

if(res)

{

alert(― I found ― + res*0+);
}

else

{

alert(― I didn‘t find it‖);

}

</script>

</body>

</html>

Functions:

Regular Expressions are manipulated using the functions which belong to either the RegExp or String

class.
Class String functions
match(pattern)

This function searches a matching pattern. Returns array holding the results.

replace(pattern1, pattern2)

Searches for pattern1. If the search is successful pattern1 is replaced with pattern2.

search(pattern)
Searches for a pattern in the string. If the match is successful, the index of the start
of the match is returned. If the search fails, the function returns -1.

Class RegExp functions
exec(string)

Executes a search for a matching pattern in its parameter string. Returns an array holding the results

of the
operation.

test(string)

Searches for a match in its parameter string. Returns true if a match is found, otherwise returns false.

Built in objects:

The document object

A document is a web page that is being either displayed or created. The document has a

number of properties that can be accessed by JavaScript programs and used to manipulate

the content of the page.

Write or writeln
Html pages can be created using JavaScript. This is done by using the write or
writeln methods of the document object.
Document.write(―<body>‖);

Document.write(―<h1> Hello </h1>‖);

The form object
Two aspects of the form can be manipulated through JavaScript. First, most
commonly and probably most usefully, the data that is entered onto your form
can be checked at submission. Second you can actually build forms through
JavaScript.

Example : Validate.js

function validate()

{
var t1=document.forms[0].elements;

var t2=parent.frames['f4'].document;

var bg1=t1.bg.value;

var c1=t1.c.value;

t2.open();

t2.write("<body bgcolor="+bg1+">");

t2.write("Candidate name is : "+c1);

t2.write("</body>");

t2.close();

}

Mypage.html
<html>
<head>

<script language = "javascriptsrc= "D:\Documents and Settings \ p6 \ validate.js">

</script>

</head>

<body>

<form>

The browser object

Some of the properties of the browser object is as follows

Navigator.appCodeName : The internal name for the browser.

Navigator.appVersion:This is the public name of the browser.

Navigator.appVersion:The version number, platform on which the browser is running.

Navigator.userAgent :The strings appCodeName and appVersion concatenated together.

The Date object
JavaScript provides functions to perform many different date manipulation. Some
of the functions are mentioned below.
Date() : Construct an empty date object.
Date(year, month, day [,hour, minute, second]) :Create a new Date object based upon numerical values

for the year, month and day. Optional time values may also be supplied. getDate():Return the day of

the month

getDay():Return an integer representing the day of the week.

getFullYear():Return the year as a four digit number.

getHours():Return the hour field of the Date object.

getMinutes():Return the minutes field of the Date object.

getSeconds():Return the second field of the Date object.

setDate(day):Set the day value of the object. Accepts values in the range 1 to 31.

setFullYear(year [,month, day]):Set the year value of the object. Optionally also sets month and day

values.

toString():Returns the Date as a string.

Events:
JavaScript is a event-driven system. Nothing happens unless it is initiated by an
event outside the script. The table below shows event, event handler and the
description about the event handler.
The following are events used with the elements

Event Attribute Description Tags/elements used

onblur When the field lost focuses and Enters into Area,button,input,select,

 another field usually By tag or mouse click textarea

onchange Whenever the text or options are Input,select,textarea

 Modified

onclick On clicking the button or reset or submit etc Most elements

ondblclick Clicking twice Most elements

onfocus Got focus in the field or entering into the field Area,button,input,select,

 textarea

Onkeydown Key pressed down Most elements

onload When the document is loaded Body,frameset

Onmousedown Moving mousedown Most elements

Onmousemove Moving mouse Most element

Onmouseout Mouse moved away Mostelement

Onmouseover Placingmouse on it Most

Onreset Clicking on reset button Form

Onselect Selecting text Input.textarea

Onsubmit Clicking on submit button Form

Onunload When unloaded from memory Body ,frameset

Dynamic HTML with JavaScript

Data Validation

Data validation is the common process that takes place in the web sites. One
common request is for a way of validating the username and password. Following
program shows the validation of data which uses two frames, in one frame user is
going to enter the data and in the other frame equivalent result is going to be
displayed.

Example JavaScript code for data validation

Mypage.html
<html>

<head>

<title>frame page </title>

</head>

<frameset rows="20%,*">

<frame name="f1" src="">
<frameset cols="20%,*">

<frame name="f2" src="">

<frameset cols="50%,*">

<frame name="f3" src="D:\Documents and Settings\Btech\Desktop\btech\p6\reg.html">

<frame name="f4" src="D:\Documents and

Settings\Btech\Desktop\btech\p6\profile.html">

</frameset>

</frameset>

</frameset>

</html>

Document Object Model and Dynamic HTML

The term Dynamic HTML, often abbreviated as DHTML, refers to the technique of making Web

pages dynamic by client-side scripting to manipulate the document content and presentation. Web

pages can be made more lively, dynamic, or interactive by DHTML techniques. With DHTML you

can prescribe actions triggered by browser events to make the page more lively and responsive.

Such actions may alter the content and appearance of any parts of the page. The changes are fast

and efficient because they are made by the browser without having to network with any servers.

Contrary to what the name may suggest, DHTML is not a markup language or a software tool. It is

a technique to make dynamic Web pages via client-side programming. In the past, DHTML relies

on browser/vendor specific features to work. Making such pages work for all browsers requires

much effort, testing, and unnecessarily long programs. Standardization efforts at W3C and

elsewhere are making it possible to write standard based DHTML that work for all compliant

browsers. Standard-based DHTML involves three aspects:

1. Javascript—for cross-browser scripting

2. Cascading Style Sheets (CSS)—for style and presentation control

3. Document Object Model (DOM)—for a uniform programming interface to access and

manipulate the Web page as a document

10.1 What Is DOM?

With cooperation from major browser vendors, theW3CisestablishingtheDocument Object

Model (DOM) as a standard application programming interface (API) for scripts to access

and manipulate HTML and XML documents. Compliant clients, including browsers and

other user agents, provide the DOM specified API to access and modify the document being

processed (Figure 10.1). The DOM API gives a logical view of the document where objects

represent different parts: windows, documents, elements, attributes, texts, events, style

sheets, style rules, etc. These DOM objects are organized into a tree structure (the DOM

tree) to reflect the natural organization of a document. HTML elements are represented by

tree nodes and organized into a hierarchy. Each Web page has a document node at the root of

the tree. The head and body nodes become child nodes of the document node (Figure 10.2).

DOM Tree Nodes

The DOM tree for a Web page consists of different types of nodes (of type Node) including:

HTML Document —Root of the DOM tree providing access to page-wide quantities, style sheets,

markup elements, and, in most cases, the element as a child node.

 HTML Element —Internal and certain leaf nodes on the DOM tree representing an HTML markup

element. The HTML Element interface provides access to element attributes and child nodes that

may represent text and other HTML elements. Because we focus on the use of DOM in DHTML,

we will use the terms element and HTML element interchangeably. The document.get

ElementById(id) call gives you any element with the given id.

Attr —An attribute in an HTMLElement object providing the ability to access and set an attribute.

The name field (a string) of an Attr object is read-only while the value field can be set to a desired

string. The attributes field of an HTMLElement object gives you a NamedNodeMap of Attr objects.

Use the length property and the item(index) method of the named node map to visit each attribute.

All DOM indices are zerobased.

 Text —A leaf node containing the text inside a markup element. If there is no markup inside an

element‘s content, the text is contained in a single Text object that is the only child of the element.

The wholeText (or data) field returns the entire text as a string. Set the data string or call the

replaceWholeText(str) method to make str the new text.

 Getting Started with DOM

Let‘s create a simple calculator (Ex: DomCalc) to demonstrate DOM and DHTML. The user enters

an arithmetic expression and clicks a button to perform the required computations. The answer is

displayed in the regular running text of the page (Figure 10.6). The HTML source shows the code

for the input control (line A), the GO button (line B) and the for displaying the computed result

(line C).

<head><title>DOM Calculator</title>

<link rel="stylesheet" href="domcalc.css"

type="text/css" title="Dom Calculator" />

<script type="text/javascript" src="domcalc.js"></script>

</head>

<body onload="init()"> /* initialization onload */

<h3>DOM Calculator</h3>

<p>Simply type in a string such as

<code>12 + 43 * 6</code> and click GO.</p>

<p>COMPUTE :

<input id="uin"

value="(5 - 2) * 8" maxlength="30" /> (A)

 <input value="GO" type="button"

onclick="comp(uin)" /> (B)

</p><p id="par">And the answer is:

00</p> (C)

</body>

The calculator is initialized immediately after page loading. The init and the comp (line B)

event handlers are in the Javascript ?le domcalc.js:

var answer;

function init()

{ answer = document.getElementById("ans")

.firstChild; // (D)

comp("uin");

}

function comp(id) {

var el = document.getElementById(id); // (E)

var res = eval(el.value); // (F)

answer.data = res; // (G)

}

 Graphical User Interface - Layout and Design

Learning Objectives

You will be able...
❑ ...to explain what a Graphical User Interface (GUI) is and what it is good for.

❑ ...to design a Graphical User Interface for an interactive map.

Introduction

Don't you think that it is easier to click on a button to initialize a computer action than typing

specific commands in a command line? Surely, if you are a computer expert you would say that the

command line is more comfortable but if you are a beginner you would agree that clicking on

buttons is the easier way to handle the computer's actions. That is why Graphical User Interfaces

were invented. They ease the handle of computer programs.

GUI (screenshot © Ubuntu)

When designing a Graphical User Interface, it is important that the needs, wants, and limitations of

the end users (who finally use the program) are given extensive attention. There exist a few rules for

the design of Graphical User Interfaces which will be listed in this lesson.

Since the topic of this module is multimedia cartography, we will concentrate on Graphical User

Interfaces of interactive maps.

Graphical User Interface - Layout and Design

1.1. User Interface versus Graphical User Interface

Learning Objectives

You will be able...

1. ...to explain what a User Interface is.

2. ...to describe what a Graphical User Interface (GUI) is and list at least three features of a
today's GUI.

Introduction

If you click on an arbitrary button (pdf, glossary or help button, etc.) or interactive item (interactive

index, link, etc.) while reading this lesson, you interact with the computer system.

When you sit in front of the screen of a running computer, you always face a User Interface (UI).

As the name implies, a User Interface is an interface between the user and the computer. The first

user interfaces were command-line interfaces where you only could interact with the computer by

typing commands on the keyboard (some Unix users still use this kind of interface). Today, we

(Mac, Linux and Windows-Users) expect to interact with the computer using a mouse, launching

programs by clicking on icons, and manipulate various windows on the screen using graphical

controls. Such user interfaces are called Graphical User Interfaces (GUI), since they use graphics

and pictures to represent the input and output of a program.

GUI (screenshot © Quantum GIS)

1.1.1. Interacting with a System

Before talking about User Interfaces and Graphical User Interfaces, we want to begin with the

basics. How machines and humans interact.

First we want to describe the stages of actions users go through when faced with the task of using a

system. According to (1988) there are seven stages of a typical user interaction with a generic

interaction system:

2. Forming the goal: I want to do something in a program.
3. Forming the intention: I have to start the program.
4. Specifying the action: I have to click on a button to open the program.
5. Executing the action: I click on the button.
6. Perceive the system state: Note that the computer operates.
7. Interpret the system state: The computer opens (hopefully) the right program.
8. Semantically evaluating the interaction outcome: Note that the right program is open.

Graphical User Interface - Layout and Design

Product Designing according to (Marinilli 2002)

First, the user forms a conceptual intention from her/his goal. Second, s/he tries to adapt this

intention to the commands provided by the system and from these commands carries out the action.

Then, the user attempts to understand the outcomes of her/his actions. This is particularly important

for computer systems, where the inner workings are hidden and users have to figure out the internal

state only from few hints.

1.1.2. Types of User Interfaces

To work with a system, the users need to be able to control the system and assess the state of the

system.

Definition of User Interface
In computer science and human-computer interaction, the user interface (of a computer program)

refers to the graphical, textual and auditory information the program presents to the user. The user

employs several control sequences (such as keystrokes with the computer keyboard, movements of

the computer mouse, or selections with the touchscreen) to control the program. (Wikipedia)

There exist several types of user interfaces. We here give you just two examples:

1. Command-Line Interface (CLI): The user provides the input by typing a command string
with the computer keyboard and the system provides output by printing text on the computer
monitor (Wikipedia).

2. Graphical User Interface (GUI): The use of pictures rather than just words to represent the

input and output ofa program (Linux junkies). Input is accepted via devices such as keyboard
and mouse.

Command-Line Interface

Graphical User Interface (screenshot © Apple)

Graphical User Interfaces will be discussed in detail in the following chapters.

Graphical User Interface - Layout and Design

1.1.3. Graphical User Interface

Definition of Graphical User Interface (GUI)

Graphical User Interfaces use pictures and graphics instead of just words to represent the input and output of a

program. The program displays certain icons, buttons, dialogue boxes etc. on the screen and the user controls the

program mainly by moving a pointer on the screen (typically controlled by a mouse) and selecting certain objects

by pressing buttons, etc. (Linux junkies)

Short History of GUI
"Today, almost everybody in the developed world interacts with personal computers in some form

or another. We use them at home and at work, for entertainment, information, and as tools to

leverage our knowledge and intelligence. It is pretty much assumed whenever anyone sits down to

use a personal computer that it will operate with a graphical user interface. We expect to interact

with it primarily using a mouse, launch programs by clicking on icons, and manipulate various

windows on the screen using graphical controls. But this was not always the case." (Reimer 2005)

until 1970 Command Line Interfaces: Text-based user

interfaces requiring commands to be typed on the

keyboard.

from 1973 GUI-Prototypes: Development of the first operational "Alto"
Computer at the Xerox Palo Alto Research Center

(PARC). The Alto is the first system to pull together

all of the elements of the modern Graphical User

Interface. (toastytech.com) Features:

• 3-button mouse
• Bit-mapped display
• Use of graphical windows

(toastytech

.com)

1981 Xerox introduces the "Star", the commercial successor to the

 Alto. (toastytech.com)

 Notable Features:

 • Double-clickable icons

 • Overlapping windows

 • Dialog Boxes

 • 1024*768 monochrome display

(toastytech.com)

Graphical User Interface - Layout and Design

1983

Apple introduces the new computer "Lisa".

(toastytech.com)

 Notable Features:

 • Pull down menus

 • Menu Bars

(toastytech.com)

Visi Corp releases Visi On, the first integrated

graphical software environment for IBM PCs.

(toastytech.com)

(toastytech.com)

1984 Apple introduces the Macintosh. (toastytech.com)

(toastytech.com)

Today Graphical User Interfaces are very common and are used for
almost all programs.

(screenshot © Apple)

Graphical User Interface - Layout and Design

1. Semantically evaluating the interaction outcome

User Interface
In computer science and human-computer interaction, the user interface (of a computer program)

refers to the graphical, textual and auditory information the program presents to the user, and the

control sequences (such as keystrokes with the computer keyboard, movements of the computer

mouse, and selections with the touch screen) the user employs to control the program. (Wikipedia)

Graphical User Interface
"Graphical User Interface is the use of pictures rather than just words to represent the input and

output of a program. Aprogram with a GUI runs under some windowing system (e.g. The X Window

System, Microsoft Windows, Mac OS). The program displays certain icons, buttons, dialogue boxes

etc. in its windows on the screen and the user controls it mainly by moving a pointer on the screen

(typically controlled by a mouse) and selecting certain objects by pressing buttons on the mouse

while the pointer is pointing at them. " (Linuxjunkies)

Graphical User Interface - Layout and Design

1.2. Graphical User Interface Design

Learning Objectives

You will be able...

// ...to name the main principle of User-Centered-Design.

// ...to list at least four of the "Golden GUI Design Rules".

// ...to list the four GUI control groups.

// ...to list the four ways to catch the user's attention.

Introduction

Designing a user interface may seem a simple and side aspect of the development of an entire

application. In fact it is, perhaps, the most important part of the development of an application.

Marinilli says: "Designing professional user interfaces is not only a matter of a good graphic artist

and some goodideas. Unfortunately, people creating user interfaces just go for a product, without

even being aware of the basics or the theoretical principles behind it." (Marinilli 2002)

When designing a user interface you always have to be aware that you create a product that is used

by other people. Often, designers are too busy to create an award-winning, cool product without

being aware that the product may be a complete mystery and unusable for the end users.

A user intreface must be user-friendly (Schnabel 2008)

This unit will deal with some of the theory behind quality user interfaces, especially graphical user

interfaces. We will show you what GUI controls exist and how you can get the user's attention on

the screen.

1.2.1. Visual Communication

The three basic principles of visual communication according to (1992) are:

• Organisation: Give the user a simple, clear, and consistent conceptual structure.

• Economy: Maximise the effectiveness of a minimal set of tools.

• Communication: Adjust your presentation to the intake capacity of your users.

Designing a non-economic user Interface (Schnabel 2008)

1.2.2. User Interface Design

Design in General
"Design is inherently creative and unpredictable. " (Shneiderman et al. 2005)
(1985) characterize design as following: Design is a process; it is not a state and it cannot be

adequately represented statically.

graphical User Interface - Layout and Design

GUI Design
An end user will never be able to read the designer's mind. What might seem an easy application for

the designer team might be awkward and difficult to employ by the end user. (Marinilli 2002)

Product Designing (Schnabel 2008)

Desktop Metaphor
The function of a Graphical User Interface is to facilitate the handling of an application by means of

graphical elements.
The design of today's graphical user interfaces often uses the so called "desktop metaphor".

Virtual Desktop (Desktop Metaphor)

(Wikipedia)

Real Desktop (Wikipedia)

The desktop metaphor itself has been extended and stretched with various implementations. Today,

we find trash cans on the desktop as well as disks and filing cabinets.

1.2.3. User-Centered Design

What is User-Centered Design?
The process from the idea of a project until its realization and usage, often ends up as following:

1 A metaphor is a figure of speech that implies comparison between two unlike entities, as

distinguished from simile, an explicit comparison signaled by the words "like" or "as". The

metaphor makes a qualitative leap from a reasonable, perhaps prosaic comparison, to an

identification or fusion of two objects, to make one new entity partaking of the characteristics of

both.

Graphical User Interface - Layout and Design

As User Interface Design should not end up (enabled.com)

User Centered-Design helps to avoid that processes end up as it is shown in the image above.
"User Centered-Design (UCD) is a design philosophy and a process in which the needs, wants, and

limitations of the end-user of an interface or document are given extensive attention at each stage of

the design process. an interface to understand intuitively what a first-time user of their design

experiences, and what each user's learning curve may look like." (Wikipedia)

User Centered Design concerns itself with:
• Usefulness

Usefulness relates to relevance: do the functions, information, etc. match what the user

actually needs? (Katz-Haas 1998)

• Usability

Usability relates to ease-of-use - a simple concept, but not always easy or intuitive to

implement. (Katz-Haas 1998)
• Visual Design

Refers to layout recommendations and to the use of graphical elements.

1.2.4. General Design Principles

According to (2005) there are eight principles, called "Golden Rules", that are applicable in most

interactive systems.

Graphical User Interface - Layout and Design

• Strive for consistency. Inconsistencies force people to spend extra time trying to figure out

how to find the answers to questions they have. This rule is the most frequently violated one,

but following it can be tricky because there are many forms of consistency. Consistent

sequences of actions should be required in similar situations; identical terminology should

be used in prompts, menus, and help screens; and consistent color, layout capitalization,

fonts, and so on should be employed throughout. Exceptions, such as required confirmation

of the delete command or no echoing of passwords, should be comprehensible and limited in

number.

The following examples show an inconsistent and a consistent thematic navigation.

Inconsistent Navigation
Consistent Navigation

• Cater to universal usability. Recognise the needs of diverse users and design for plasticity,
facilitating transformation of content. Novice-expert differences, age ranges, disabilities, and
technology diversity each enrich the spectrum of requirements that guides design. Adding

features for novices, such as explanations, and features for experts, such as shortcuts and
faster pacing, can enrich the interface design and improve perceived system quality.

• Offer informative feedback. For every user action, there should be system feedback. For
frequent and minor actions, the response can be modest, whereas for infrequent and major
actions, the response should be more substantial. Visual presentation of the objects of interest
provides a convenient environment for showing changes explicitly.

The following examples show two applications which (do not) provide feedback for a minor

action, namely clicking on a text.

Graphical User Interface - Layout and Design

Which two feedbacks are implemented in the top right example?

• Text Highlighting

• Hand symbol

• Design dialogs to yield closure. Sequences of actions should be organized
into groups with a beginning, middle, and end. Informative feedback at the
completion of a group of actions gives operators the satisfaction of
accomplishment, a sense of relief, the signal to drop contingency plans
from their minds, and a signal to prepare for the next group of actions. For
example, e-commerce web sites move users from selecting products to the
checkout, ending with a clear confirmation page that completes the
transaction.

• Prevent errors. As much as possible, design the system such that users

cannot make serious errors; for example, gray out menu items that are not

appropriate and do not allow alphabetic characters in numeric entry fields.

If a user makes an error, the interface should detect the error and offer

simple, constructive, and specific instructions for recovery. For example,

users should not have to retype an entire name-address form if they enter

an invalid zip code, but rather should be guided to repair only the faulty

part. Erroneous actions should leave the system state unchanged, or the

interface should give instructions about restoring the state.

• Permit easy reversal of actions. As much as possible, actions should be
reversible. This feature relieves anxiety, since the user knows that errors
can be undone, thus encouraging exploration of unfamiliar options. The
units of reversibility may be a single action, a data-entry task, or a
complete group of actions, such as entry of a name and address block.

• Support internal locus of control. Experienced operators strongly desire
the sense that they are in charge of the interface and that the interface
responds to their actions. Surprising interface actions, tedious sequences of
data entries, inability to obtain or difficulty in obtaining necessary
information, and inability to produce the action desired all build anxiety
and dissatisfaction.

Additionally, there is one basic principle which counts for all User Interface

designers:
Keep your message as simple as possible. Use only the amount of text and

graphics as is absolutely necessary to get your point across! (Skaalid 1999)

1.2.5. GUI Controls

A graphical user interface basically consists of windows and containers

(Boxes/Panels/Panes). Within these elements, there are various GUI Control

tools. There exist four groups of GUI Controls:

• Input Elements (input field, slider, spin button, etc.)

• Output Elements (output field, status bar, etc.)

• Action Elements (toggle button, etc.)

Design of GUI Controls
Many GUI Controls are buttons. A button is a widget which is clickable and which

provides the user a simple way to trigger an event, such as selecting the zoom

function of an interactive map (Wikipedia). Buttons are always decorated with button

graphics (icons), which are placed inside the buttons. These icons identify the action,

setting mode, or other function represented by the button.

Buttons in the Open Office application (OpenOffice.org 2006)

There are a few design guidelines for the designing of the button icons and the

buttons themselves (Sun Developer Network (SDN)):

• Design icons to identify clearly the action represented by the button.

• Keep the drawing style of the icons symbolic; too much detail can make it more
difficult for users to understand what the icon represents and thus what a button
does.

